Gasket Failure Causes Leak

Lessons Learned

Volume 04 Issue 35

© 2004 USW
A USW “Lessons Learned” Activity

GasketFailure Causes Leak

Purpose

To conduct a small group “lessons learned” activity to share information gained from incident investigations.

To understand “lessons learned” through a systems of safety viewpoint.

This material was produced by The Labor Institute and USW under grant number 46DO-HT11 Susan Harwood Training Grant Program, from the Occupational Safety and Health Administration, U.S. Department of Labor. It does not necessarily reflect the views or policies of the U.S. Department of Labor, nor does mention of trade names, commercial products or organizations imply endorsement by the U.S. Government.

The incident and recommendations made are from an actual USW represented facility. These recommendations are a product of the site’s analysis of the incident and not meant to represent the USW official view on the topic(s). In fact, one of the goals of this exercise is evaluate the recommendations made and to suggest improvements.
A USW “Lessons Learned” Activity

Introduction

One Hour “Lessons Learned” Safety Training Activity

This is a Small Group Activity Method (SGAM) exercise. It is designed for use in toolbox style meetings where a group of craft persons, operators, or other small group is assembled for a safety training session. The whole group should be further divided into smaller discussion groups of four to six people.

The tone of the meetings should be informal to create as much discussion as possible within the groups and among the groups. Active participation by group members is essential for this exercise to be successful.

If you plan to present a Lessons Learned Activity and have not been trained in the USW worker trainer program, you should contact the USW Health, Safety & Environment Department:
Phone (412) 562-2581
email: safety@steelworkers-usw.org for trainer information.

For this exercise, each person in the group should have their own copy of this activity printed in its entirety. The exercise consists of three tasks. Each task is designed to provoke thought and generate discussion about the incident at hand. Each discussion group should designate a scribe to keep notes and report back to the facilitator and class after each task. When the exercise is completed, review the Summary on page 13.

Definitions of terms used in this exercise are provided throughout the activity. A glossary of terms is also provided in the appendix.

The incident(s) depicted in this activity are based upon real occurrences. The names of persons and corporations are fictitious.
Task 1

Please read the following scenario:

A gasket on an amine coalescer failed, releasing a large volume of propane and butane causing a vapor cloud. A nearby operator heard a loud pop and immediately identified the source as the amine coalescer. The unit board operator was called to shut the control valve to stop product flow to the vessel. Operations put water on the leaking vessel and isolated it. They depressurized the vessel via the pressure relief valve bypass line to the flare system to minimize the leak.

The shift foreman was notified of the leak and security notified the entire plant of the situation. All available operators reported to the unit and a fire truck was placed on standby.

The investigation revealed the following facts:

- Approximately 6” of a gasket failed at the two o’clock position on the flange.
- An improper bolting procedure was used on the flange.
- An existing bolting procedure was not used nor was it specific in the scope of the work.
- The gasket was of an old style that had not been removed from the warehouse inventory.
- The warehouse personnel were not aware that the gasket style had been changed.
- The warehouse inventory showed that there were 2 gaskets still in stock so no new gaskets had been ordered.
- There was no comparison between the gasket drawing and the actual gaskets in stock.
A USW “Lessons Learned” Activity

Task 1 (continued)

On the next page you will find a logic tree that shows how the investigators at this site linked the incident that occurred (the top event) to the facts described in the scenario and the incident’s root causes. Below each root cause in the logic tree you will find a block with the title “SOS” (System of Safety).

Find the boxes marked SOS. Directly above those boxes will be a root cause of the incident. Your task is to complete the logic tree by identifying the major system of safety affected where the root cause failure occurred and list it in the box. These “systems” are listed in a chart on page 9. Note: some of the SOS boxes may already be completed for you.

Please select someone in your group to act as scribe to report back your answers.
A USW “Lessons Learned” Activity

A **Logic Tree** is a pictorial representation of a logical process that maps an incident from its occurrence to the root causes of the incident.

What Caused or Allowed a gas release to occur

- Gasket failure
 - Improper bolting procedure was conducted
 - **Root Cause** Procedure not specific in scope of work
 - **SOS**
 - Existing procedure was not used
 - **Root Cause** Old style gasket on warehouse shelf
 - **SOS**
 - Warehouse did not destroy old gaskets
 - **Root Cause** Warehouse did not realize new gaskets were to be used
 - **SOS**
 - Lack of spare parts audit
 - **Root Cause** No comparison between gasket drawing & actual stock item
 - **SOS**
 - No new gaskets in stock
 - **Root Cause** New gaskets were not ordered
 - **SOS**
 - Stock records showed 2 gaskets in stock
 - **Root Cause** Warehouse personnel not aware of gasket change
 - **SOS**
 - Bad gasket (old style)
 - **Root Cause**
 - **SOS**
 - No new gaskets in stock
 - **Root Cause**
 - **SOS**

What Caused or Allowed a gas release to occur

- Gasket failure
 - Improper bolting procedure was conducted
 - **Root Cause** Procedure not specific in scope of work
 - **SOS**
 - Existing procedure was not used
 - **Root Cause** Old style gasket on warehouse shelf
 - **SOS**
 - Warehouse did not destroy old gaskets
 - **Root Cause** Warehouse did not realize new gaskets were to be used
 - **SOS**
 - Lack of spare parts audit
 - **Root Cause** No comparison between gasket drawing & actual stock item
 - **SOS**
 - No new gaskets in stock
 - **Root Cause** New gaskets were not ordered
 - **SOS**
 - Stock records showed 2 gaskets in stock
 - **Root Cause** Warehouse personnel not aware of gasket change
 - **SOS**
 - Bad gasket (old style)
 - **Root Cause**
 - **SOS**
Task 2

A. Below you will find two lists. On the left are the root causes from the logic tree on the previous page. On the right are recommendations made by the team that investigated this incident. On the chart below identify which of the “recommendations” would eliminate or reduce each “root cause” by placing the number of the recommendation(s) on the line provided. More than one recommendation can apply to a root cause.

<table>
<thead>
<tr>
<th>Root Causes</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Bolting procedure not specified in scope of work.</td>
<td>1. Destroy all old style gaskets.</td>
</tr>
<tr>
<td>B. Storehouse didn’t realize new gaskets were to be used.</td>
<td>2. Follow manufactures torquing procedures and have this information in maintenance’s data base for future work on this vessel.</td>
</tr>
<tr>
<td>C. No comparison between gasket drawing & actual stock item.</td>
<td>3. Attach hard copies of torquing procedure to gaskets in storehouse stock.</td>
</tr>
<tr>
<td>D. Storehouse personnel not aware of gasket change.</td>
<td>4. Storehouse to audit vessel & exchanger gaskets for any changes in materials over past 4 years. Review shelf items to confirm they match changes shown on gasket drawings.</td>
</tr>
<tr>
<td></td>
<td>5. Send message to all storehouse personnel on this incident for awareness and training.</td>
</tr>
</tbody>
</table>
B. Use the concepts found on the factsheets on pages 9 through 12 and evaluate the recommendations from Question A. How would you strengthen or add to the list?
A USW “Lessons Learned” Activity

Task 3

Discuss ways in which the “Lessons Learned” (listed below) from this incident can be applied at your workplace. Please explain.

Lessons Learned

- Certain equipment, have special bolting procedures for flanges, man way’s, nozzles etc. Maintenance personnel should be aware of these procedures and have them available at all times.

- Good communication is a must when changing from one parts stock to another. Maintenance, storehouse personnel, engineers, operations, etc. should all be notified of the change. Old parts should be removed from stock unless they are OK to be used.
Systems of Safety

And Subsystems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Prevention</td>
<td>Highest—the first line of defense</td>
<td>Middle—the second line of defense</td>
<td>Middle</td>
<td>Least Effective—the last line of defense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Most Effective</td>
<td>To further minimize and control hazards.</td>
<td></td>
<td>To protect when higher level systems fail.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples of Safety Sub-systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical</td>
<td>Inspection and Testing</td>
<td>Enclosures, Barriers and Containment</td>
<td>Monitors</td>
<td>Operating Manuals and Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td>Relief and Check Valves</td>
<td>Process Alarms</td>
<td>Process Safety Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality Control</td>
<td>Shutdown and Isolation Devices</td>
<td>Facility Alarms</td>
<td>Process, Job and Other Types of Hazard Assessment and Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turnarounds and Overhauls</td>
<td>Fire and Chemical Suppression Devices</td>
<td>Emergency Notification Systems</td>
<td>Permit Programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical Integrity</td>
<td></td>
<td></td>
<td>Emergency Preparedness and Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staffing</td>
<td>Codes, Standards and Policies**</td>
<td></td>
<td>Training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Information Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Communications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Investigations and Lessons Learned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HF – Indicates that this sub-system is often included in a category called Human Factors.

* There may be additional subsystems that are not included in this chart. Also, in the workplace many subsystems are interrelated. It may not always be clear that an issue belongs to one subsystem rather than another.

** The Codes, Standards and Policies and Management of Change sub-systems listed here are related to Design and Engineering. These subsystems may also be relevant to other systems, for example, Mitigation Devices. When these sub-systems relate to systems other than Design and Engineering they should be considered as part of those other systems, not Design and Engineering.
Surprisingly, the same hazard can often be addressed in more than one system. Take the low pipe in the doorway above, on the next two pages you’ll see how this same problem could be handled by each of the major Systems of Safety.

Which is the best approach? Well, if you look at the Systems of Safety Chart on the previous page, you will find the SOS’s arranged in order of strength: the most powerful – Design – on down to the least powerful – Personal Protective Factors.

A good investigation team will consider the full range of recommendations for each root cause.
A USW “Lessons Learned” Activity

Personal Protective Factors

- Sub-systems that include a broad range of working conditions and situations that affect workers.
- Weakest system
- Controls the hazard directly at the individual’s level

Procedures and Training

- The instructions and knowledge necessary to maintain and operate equipment or processes
- Easier to affect groups of workers.
- Dependent on individuals’ memories and lack of distraction

The Warning System

- Devices that warn of a dangerous or potentially dangerous situation.
 - Draws attention
 - May be missed or ignored
A USW “Lessons Learned” Activity

The Mitigation System

Sub-systems that automatically act to control or reduce the effect of hazards.

- Workers protected automatically

Maintenance & Inspection

The system responsible for maintaining, repairing and inspecting equipment and processes.

- Vital to make sure even the best designed system continues to function safely

Design and Engineering

The primary (highest level) system that designs the hazard out of the process.

- Strongest system
- Hazard eliminated
Summary: Lessons Learned

1. The objective of “lessons learned” is to prevent accidents through identifying and correcting underlying defects in systems of safety. To achieve maximum prevention, all recommended changes should be made.

2. Corrective action resulting from lessons learned is one of the best methods for achieving proactive health and safety. Maximum prevention is achieved by correcting the conditions that led to the incident at other sites in the plant and at other sites.

3. Systems of safety-based analysis help identify the underlying causes of incidents and are valuable for determining what corrective measures should be taken as a result of the lessons learned.

4. Many times the result of an incident investigation is that worker error is identified as the main contributing factor. When a systems of safety-based analysis is used, multiple root causes are usually uncovered.

5. The most effective controls of health and safety hazards are those which are integrated or designed into the process, such as engineering controls. The least effective controls involve personal protective equipment and procedures that merely acknowledge the hazard and do nothing to eliminate it.

6. All work-related hazards must be evaluated before work begins to eliminate or reduce worker exposure to hazards and to prevent injuries.
Glossary of Terms (Appendix)

Several unique terms are used while doing the “Lessons Learned” exercises. Their definitions are listed below.

Contributing Factor—something that actively contributes to the production of a result, an ingredient.

Fact—a piece of information presented as having objective reality, an actual occurrence or event.

Hierarchy of Systems of Safety—the ranking of systems of safety as to their relative effectiveness in providing accident prevention. This hierarchy is represented by the “Fulcrum” with the most effective system of safety residing on the left side of the lever. Less effective systems reside further to the right on the lever.

Lessons Learned—A summation of an investigation that describes safety hazards or conditions with general educational recommendations to identify and correct similar conditions. These differ from investigation recommendations as illustrated below:

Investigation recommendation: Replace the carbon steel gate valve on the vacuum tower bottoms line with a chrome valve. The valve failed due to corrosion.

Lessons Learned: Verify that carbon steel valves and piping are not used in vacuum tower bottoms service because corrosion can cause them to fail.

Logic Tree—a pictorial representation of a logical process that maps an incident from its occurrence to the root causes of the incident.

Recommendations—calls for specific changes that address each root cause of an incident or accident to prevent its reoccurrence.

Root Cause—basic cause of an accident found in management safety systems.
Glossary of Terms (continued)

Supports and Barriers—“supports” are conditions that promote or render assistance to implementing recommendations while “barriers” are conditions that obstruct the implementation of recommendations.

Systems of Safety—management systems that actively seek to identify and control hazards before they result in an incident or injury.

- Design and Engineering
- Maintenance & Inspection
- Mitigation Devices
- Warning Systems
- Procedures and Training
- Personal Protective Factors
A USW “Lessons Learned” Activity

Conducting a “Lessons Learned” Activity

Circle the number that best shows your response to each of the following questions.

1. How easy was it for you to understand the “systems of safety” approach presented in this activity?

 4 3 2 1
 Very easy Somewhat easy Somewhat hard Very hard

2. How useful do you think this “systems of safety” way of thinking could be for tackling safety and health problems at your workplace?

 4 3 2 1
 Very useful Somewhat useful Not very useful Of no use

3. How much do you agree or disagree with the following statement:
 The logic tree diagram approach can be helpful for analyzing the root causes of safety and health incidents.

 4 3 2 1
 Strongly agree Agree Disagree Strongly disagree

4. Overall, how useful was this “lessons learned activity” for considering safety and health problems at your workplace?

 4 3 2 1
 Very useful Somewhat useful Not very useful Of no use